

Physical Science 20 - Ms. Hayduk

System Definitions

System: the part of the universe being studied (big - Earth, or small - one atom)

OSurroundings: the part of the universe outside the system

We look at transfer of energy/matter between system and surroundings.

System Definitions

O Open system: free exchange of matter and energy with surroundings

OClosed system: free exchange of energy only
O Isolated system: no interaction with surroundings

Heat as Energy

O Kinetic energy: associated with motion
OPotential energy: stored energy associated with forces of attraction or repulsion
OThermal energy: from random molecular motion
OProportional to temperature, but not the same thing

OMeasured in Joules ($1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$)

Conservation of Energy

OIn interactions between system and surroundings, energy cannot be created or destroyed, only transferred
O Total energy (q) will remain constant

$$
\mathrm{q}_{\text {system }}+\mathrm{q}_{\text {surroundings }}=0
$$

OBasically: all energy that leaves the system goes into the surroundings, and vice versa

Temperature

OMeasure of average molecular kinetic energy of a substance
O Measured in degrees Celsius (${ }^{\circ} \mathrm{C}$), degrees Fahrenheit (${ }^{\circ} \mathrm{F}$) or Kelvin (K)
O Kelvin and degrees Celsius are the same increment (interchangeable units)

Particle Theory

Heat

OVariable: $q \quad$ Units: J (Joules)

OA system cannot "contain" heat - it has internal energy that can be transferred as heat

Heat versus Temperature

Heat (q) Temperature (T)

Measure of energy Measure of random flowing into or out of a motion of particles in a system substance
Energy that is Indication of direction transferred during a heat will flow temperature change

Calorimetry

O Inside, a heated or cooled object (or chemical reaction) - the system - is submerged in water -the surroundings. The temperature change of the water can be used to determine the heat released by the system.
OThe calorimeter needs to prevent heat loss to the surroundings so the temperature change within it can be accurately recorded.

Calorimetry

OThe science of determining changes in energy of a system by measuring heat exchanged with surroundings

OCalorimeter: well-insulated vessel (as close to an isolated system as possible)

Calorimetry

O Coffee cup calorimeter $\rightarrow \rightarrow \rightarrow$ OStyrofoam is a great insulator OScientists that are doing more sophisticated experiments may use fancier equipment, but this device is very accurate for experiments at the high school level!

Quantity of Heat

O Amount of heat needed to change
temperature of a substance depends on:
OHow much temperature will change
OQuantity of substance
ONature of substance

Heat Capacity

OPhysical property of a substance
O Molar heat capacity: describes amount of heat needed to increase temperature of one mole of a substance by one degree $\left(\mathrm{J} / \mathrm{mol}^{\circ} \mathrm{C}\right.$ or J/mol-K)
O Specific heat capacity: same, but for one gram instead of one mole $\left(\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right.$ or $\left.\mathrm{J} / \mathrm{g} \cdot \mathrm{K}\right)$

Example 1: Specific Heat

It takes 132 J of energy to heat a sample of iron from $12.3^{\circ} \mathrm{C}$ to $33.9^{\circ} \mathrm{C}$. What is the mass of the iron sample?

Specific Heat Capacity

OUnique for each substance
OHigher for compounds than elements, due to more complex structures
ODescribes to how easy it is to heat up a substance, and how long it takes to cool
OThink: why do Toronto and Vancouver have warmer winters than Regina?

Specific Heat Capacity

$$
q=m c \Delta T
$$

$\mathrm{q}=$ heat energy transferred $(-)$ /absorbed $(+)$
$\mathrm{m}=$ mass of substance (g)
$\mathrm{c}=$ specific heat capacity of substance $\left(\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right.$ or $\mathrm{J} / \mathrm{g} \cdot \mathrm{K})$
$\Delta T=$ temperature change of substance, $\mathrm{T}_{\text {final }}-$ $\mathrm{T}_{\text {initial }}\left({ }^{\circ} \mathrm{C}\right.$ or K$)$

Example 3: Specific Heat

A 3.50 g sample of pure gold releases 33.1 J of heat. Its initial temperature was $78.2^{\circ} \mathrm{C}$. What is the final temperature of the sample?

Example 4: Specific Heat

A 170.8 g sample of iron is heated to $102.1^{\circ} \mathrm{C}$ The sample of iron is then submerged in a calorimeter full of water at $10.6^{\circ} \mathrm{C}$. The final temperature of both substances is $24.2^{\circ} \mathrm{C}$. What is the volume of water used?

Heat Transfer in Systems

Endothermic/Exothermic

O Endothermic: heat is absorbed by the system OExothermic: heat is released by the system
O Can occur during physical changes and chemical changes

Phase Changes

Energy in Phase Changes

OPhysical change - no new substance produced
OHeat is absorbed or released during the process, depending on the energy change in the system
O Endothermic processes: sublimation, fusion, evaporation (to higher energy phase)
O Exothermic processes: freezing, deposition, condensation (to lower energy phase)

Phase Change Process

OBetween phase changes:
OAll energy entering/leaving system is changing molecular motion
OOne state (solid, liquid, gas)
OTemperature is changing

Example: Heating Curve

Example: Heating Curve Con'd

1. When is kinetic energy changing? When is potential energy changing?
2. What state is the substance at C ?
3. What is happening at D ?
4. What is the melting point of the substance?
5. What is the boiling point of the substance?
6. Does it take more energy to melt or boil the substance?

Latent Heat

O Latent heat: energy is put into or removed from a system but no temperature change occurs

O All energy used to break or form bonds
O Different value for fusion (melting) and vaporization

Example 1: Latent Heat

How much energy does it take to melt 100 g of ice into water at $0.0^{\circ} \mathrm{C}$? $\left(\mathrm{L}_{\mathrm{f}}=333.7 \mathrm{~J} / \mathrm{g}\right)$

Example 2: Latent Heat

How much energy does it take to melt 10.0 g of snow at $0.0^{\circ} \mathrm{C}$ and heat it to boiling? $\left(\mathrm{L}_{\mathrm{f}}=333.7\right.$ J / g)

Example 3: Latent Heat

You want to thaw a 1.0 kg chicken that is $-2.8^{\circ} \mathrm{C}$ to room temperature $\left(20^{\circ} \mathrm{C}\right)$.
Melting point $=-2.8^{\circ} \mathrm{C} \quad \mathrm{L}_{\mathrm{f}}=247 \mathrm{~J} / \mathrm{g}$
$\mathrm{c}=3.32 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
a. How much energy does this take?
b. In a 700 W microwave, how long would this take on full power? $(\mathrm{P}=\mathrm{E} / \mathrm{t})$

Enthalpy

O Total energy content of a system
OUnmeasurable; but more relevant are changes in enthalpy, which is measurable
OChange in heat of a system is enthalpy of reaction, $\Delta \mathrm{H}$
$O \Delta$ is Greek letter Delta, which means "change"

Thermochemical Equations
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}=-1625 \mathrm{~kJ}$
a. What type of reaction is this?
b. Write the mole ratios.
c. Is this endothermic or exothermic?

Thermochemical Equations
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}=-1040 \mathrm{~kJ}$
O Enthalpy is based on coefficients in the reaction
OAbove, based on $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}, 3 \mathrm{~mol} \mathrm{O}_{2}$, etc...
OQuestions:
OIs this endothermic or exothermic?
OHow much energy is released/absorbed if 6 mol of O_{2} reacts?

Example 1: TC Equations

Solid sodium bicarbonate reacts with
hydrochloric acid (HCl) to make a sodium chloride solution, water and carbon dioxide gas. The reaction absorbed 11.8 kJ of heat for each mole of sodium bicarbonate.

Write the thermochemical equation for the reaction. (Endothermic or exothermic?)

Example 2: TC Equations

Gasoline contains ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ which completely combusts to produce 1235 kJ of heat per mole of ethanol.
a. Write the thermochemical equation. (Endothermic or exothermic?)
b. How much heat is released when 50.00 g of ethanol completely combusts?

Enthalpy of Solution

O Also called heat of solution

OSolid dissolving in water absorbs or releases energy
O Experimentally determined by finding q (using $q=m c \Delta T$) and dividing by number of moles of reactant:

$$
\Delta \mathrm{H}=\frac{\mathrm{q}}{\mathrm{n}}
$$

Example 1: Heat of Solution

Magnesium sulfate can be dissolved in water to make a hot pack.
$\mathrm{MgSO}_{4}(\mathrm{~s}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \quad \Delta \mathrm{H}=-91.4 \mathrm{~kJ}$
If 5.00 g of MgSO_{4} is dissolved in 100.0 g of water at $25.0^{\circ} \mathrm{C}$:
a. How much energy is released?
b. What temperature is the final solution? (Assume c $=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$)

Example 2: Heat of Solution

You dissolve 5.0 g of sugar $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in a 250.0 mL of coffee at $92.00^{\circ} \mathrm{C}$ and the temperature drops to $91.72^{\circ} \mathrm{C}$.
a. What assumptions can you make?
b. How much energy is transferred between the system and surroundings?
c. What is the experimental heat of solution in $\mathrm{kJ} / \mathrm{mol}$ of sugar?
d. Is this endothermic or exothermic?

